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In this paper we study Nash equilibria in auctions from the kinetic theory of active particles
point of view. We propose a simple learning rule for agents to update their bidding strate-
gies based on their previous successes and failures, in first-price auctions with two bidders.
Then, we formally derive the corresponding kinetic equations which describe the evolution
over time of the distribution of agents on the bidding strategies. We show that the stationary
solution of the equation correspond to the symmetric Nash equilibrium of the auction, and
we prove the convergence to this stationary solution when time goes to infinity. We also intro-
duce a more general learning rule that only depends on the income of agents, and we apply
to both first- and second-price auctions. We show that agents learn the Nash equilibrium in
first-price and second-price auctions with these rules. We present agent based simulations of
the models, and we discuss several open problems.
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1. Introduction

The kinetic theory of active particles (KTAP) is a relatively new field of research,
having been developed in the last years. It provides a theoretical framework for
modeling social and economic systems, based on the tools and ideas of statistical
mechanics.2,5,7 The key idea behind the kinetic theory of active particles is to model
any system as a collection of interacting agents, each having its own internal state
and dynamics. The evolution of the system is then described by a set of integro-
differential equations of Boltzmann type,27 which take into account the interac-
tions between the agents as well as their internal dynamics, and the interactions of
the agents with the environment. Hence, we can explore very large spaces of strate-
gies starting with simple microscopic rules. In the grazing limit, the Boltzmann-
type equations can be simplified to a Fokker-Planck equation that describes the
evolution of the probability distribution function of the agents’ internal states. The
KTAP is a very powerful tool for modeling a wide variety of phenomena, includ-
ing opinion formation,29,30,40 finance and economics,21,28 traffic flow,13,43,44 swarm
and flocking behavior,4,6,12, learning9,34 life science problems,1,3 and the spread of
epidemics14,22, among many others15,17,26,39.

On the other hand, game theory is a branch of mathematics that studies the
optimal behavior of rational agents in strategic situations.16 Strategic situations in-
volve agents whose actions are interdependent, shaped not only by each other but
also by unpredictable factors from the environment, the so-called Nature’s moves.
The rationality hypothesis in game theory assumes that agents are able to perfectly
analyze the strategic situation and compute the optimal way to play. When they
reach a situation where nobody can improve by unilaterally changing their actions,
we say that they are playing a Nash equilibrium, see Section §2 for more details on
terminology and relevant results.

However, in real world games, agents are often not perfectly rational. They
may have limited cognitive abilities, incomplete information about the strategic
situation, or may be influenced by emotions or biases. As a result, agents in real-
world games often learn to play by trial and error, educated guesses, and heuristic
plans.18,37,38,41

Agents typically try to learn optimal strategies by improving their play based
on the success or failure of their past actions, a process known as reinforcement
learning. Over time, agents learn to associate certain actions with higher rewards
and lower penalties, and they begin to select those actions more frequently. Other
dynamics that can be used include imitation learning, evolutionary processes, and
best-response dynamics, especially for large spaces of strategies.8,10,19 Let us stress
that the convergence to Nash equilibria cannot be guaranteed; for instance, all
known dynamics fail for the simple and well known Tic-Tac-Toe game. The kinetic
theory associated to the evolution of learning agents was used recently mainly for
zero-sum games.31,32

Game theory plays a significant role in the kinetic theory of active particles
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(KTAP).1 Interactions between particles are modeled using game-theoretic tools,
often resulting in non-local, non-linear dynamics. Furthermore, the strategies em-
ployed by particles, driven by their internal activity, are likely to be heteroge-
neously distributed across the population, as well as the corresponding payoffs.
Importantly, this distribution of strategies is not static; it evolves over time due to
the learning capabilities of the agents. These features are crucial to KTAP’s ability
to effectively model complex systems.

Several interesting problems in game theory are related to auctions.20,23,24,35,36

In a typical auction setting, bidders have private valuations of the goods being
auctioned. These valuations are usually unknown to other bidders and may follow
some unknown probability distribution. Additionally, the number of bidders may
be uncertain.

Under certain assumptions on the private valuations of the goods, it is possible
to compute the optimal bidding strategy for a given bidder. This strategy typically
involves bidding a certain percentage of the bidder’s own valuation, that depends
on the specific auction format. For example, in a second-price auction, the optimal
bidding strategy for a bidder is to bid their true valuation. This is because the
bidder will win the auction if their bid is higher than all other bids, and they will
only pay the second-highest bid. However, in a first-price auction, the bidder will
pay their own bid if they win, and the optimal bidding strategy in a first-price
auction is to bid a percentage of the bidder’s true valuation that is less than 100%
and depends on the number of bidders, see Section §2 for details.

Hence, in Section §3 we propose and analyze a simple toy model of learning
for two players in a first-price auction, from the KTAP point of view. We choose
a simple update rule for each player’s bidding strategy, depending on the success
or failure of their previous bid, and the strategies they use. The corresponding
kinetic equations are then obtained and we show that the Nash equilibrium of the
auction is a stationary solution. We provide an heuristic argument of the long-time
asymptotic behavior of the model, which coincides with agent based simulations
showing that bidders learn to play the Nash equilibrium.

We analyze a more realistic model in Section §4. We consider both first-price
and second-price auctions with a learning rule that depends only on the profit that
bidders make in the auction. We do not assume, as before, that the bidders know
the other player strategy, which is a strong assumption since only bids are public
information, and they include both the strategy and the valuation of the players.
We show the convergence to the corresponding Nash equilibria in both cases.

Let us observe that this modeling framework not only captures the essence of
KTAP, but also bridges the gap between KTAP and game theory, providing valu-
able insights into the dynamics of complex systems where learning and strategic
interactions are at play. We close the paper by discussing some generalizations and
open problems in Section §5, showing that the model can be extended to k-players
auctions, and discussing several lines to explore, aiming to extend both KTAP and
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Game Theory.

2. Preliminary definitions

2.1. Game theoretic notions

Let us recall briefly the definition of a game. For details, we recommend the books
of Krishna and Maschler23,24.

Definition 2.1. 23 A game G consists in:

(1) a set of players N ;
(2) for each player i ∈ N there exists a set of actions Ai, or pure strategies;
(3) for each player i ∈ N there exists a function ui : ∏j∈N Aj → R, called the

utility function.

As usual in Game Theory, given a vector x, we call x−i the vector x without the
i-th component. We will identify x and (xi, x−i).

Definition 2.2 (Nash Equilibrium). A Nash equilibrium in a game G is a vector
a∗ ∈ ∏j∈N Aj such that

ui(a∗) ≥ ui(ai, a∗−i).

for all player i, and any ai ∈ Ai.

Essentially, the players have no incentive to modify unilaterally their actions.
This definition can be extended to mixed strategies, where instead of an action,
each player i selects a probability distribution on the actions Ai, and the utility
function is defined in terms of the expected value of the utility given the players’
mixed strategies.

2.2. Auction theory

In single-object auctions, a set of bidders compete to acquire a single object. Each
bidder has a private valuation for the good, which is the value that the object rep-
resents to them. Private valuations mean that each bidder does not know the val-
uations of the other bidders.

We also assume that the valuations are randomly generated from a known set
of independent and identically distributed random variables.

Formally, a single-object auction can be modeled as follows:

(1) Let N be the set of bidders.
(2) Let V be the known random variable with continuous distribution f , from

which the valuations are generated.
(3) Let vi ≥ 0 be bidder i’s private valuation for the auctioned good.
(4) Let bi the bidder i’s bid.
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We then define a game G by introducing for each bidder i (i) a set of action Ai,
(ii) the amount bi that player i can bid modeled by a function vi ∈ R 7→ β(vi) =
bi ∈ R, and (iii) the utility functions defined as the sum a loosing bidder must
pay, and, if i won, the difference between the private value vi and the amount the
winner has to pay.

We need to define a mechanism to decide which bidder is the winner. There are
several auctions rules, but we will concentrate only on the most common ones.

A first-price auction is a type of auction in which the player with the highest bid
wins the auctioned object and pays his bid, and the loosing bidders do not pay
anything. First-price auctions can be conducted either as sealed-bid auctions or
as an iterative process like English auctions. In a sealed-bid first-price auction, all
bidders submit their bids simultaneously in sealed envelopes, while in an English
first-price auction, the auction starts at a low price and bids are called out orally.
The auction ends when no player is willing to bid any higher. In this type of auc-
tions, the Nash equilibrium is known, and depends on the number of bidders. For
instance, given N bidders with independent and identical valuations {vi}1≤i≤N
with uniform distribution V ∼ U [0, 1], the strategy of player i in a symmetric
Nash equilibrium is a function β depending on its private valuation,23,24

β(vi) =
(N − 1)vi

N
.

In a second-price auction, the bidder with the highest bid wins the auction, but
pays the price of the second-highest bid. This type of auction was introduced by
Vickrey,42 and the symmetric Nash equilibrium is to bid the true valuations,23

β(vi) = vi.

Let us remark that the hypothesis that V is a uniform distribution is only used
for simplicity. Indeed, the Revenue Equivalence Theorem, a cornerstone in auction
theory, enables us to find the equilibrium in different auctions by comparing with
the second-price auction results.

Theorem 2.1 (Revenue Equivalence Theorem23). In any auction where the bidder
with the highest bid wins, assuming that

(1) the valuations Vi are random variables, independent, and identically distributed;
(2) the bidders are risk neutral;
(3) the expected payment of bidders with valuation 0 is 0,

in any symmetric and increasing equilibria (i.e., β is an increasing function) the auctioneer
has the same expected revenue.

We do not enter in the discussion of risk neutrality, essentially it means that
bidders are not influenced by winning or not the auction, and just maximize their
utilities.
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3. A simple model for two players, first-price auctions

We will consider a fixed set of N bidders. In each step we choose two of them
at random to participate in a sealed-bid first price auction. We assume that the
probability of a fixed player i to interact in a time interval ∆t follows a Poisson
distribution of parameter λ = 1.

Player i’s internal activity is modelled by a parameter pi belonging to [0, 1] that
will evolve in time as a consequence of interactions among bidders. The initial
value pi(0) of bidders’ activity is sampled from a random variable with a given
distribution independently for every bidder.

Once that the two players are chosen, each will sample independently a valua-
tion vi of the object to be auctioned from random variables Vi ∼ U [0, 1]. However,
it is important to note that this specific selection of random variables does not
inherently limit the model’s adaptability. It can be effectively tailored to accommo-
date any given probability distribution for the valuations.

Finally, each agent will bid accordingly with

βi(vi, t) = vi pi(t). (3.1)

Thus pi(t) is the fraction of the valuation that bidder i is willing to bet. Notice that
the strategy expressed by bidders are heterogeneously distributed in the popula-
tion as a consequence of the individual sampling of the value.

After this, each player updates their parameters. Only players involved in the
game change their parameters. Let’s say i and j are the players that participated in
the auction. They will update their parameters with the following rule:

pj(t + ∆t) =


pj(t)q if βi(vi, t) ≤ β j(vj, t) and pj(t) ≥ pi(t),

pj(t) otherwise,
(3.2)

and

pi(t + ∆t) =


1 − q(1 − pi(t)) if βi(vi, t) ≤ β j(vj, t) and pj(t) ≥ pi(t),

pi(t) otherwise,
(3.3)

where q ∈ (0, 1) is a fixed constant and ∆t is a short time period. The parameter
q is a measure of how likely are the players to modify their strategies. The closer
is q to 1, the less willing are the players to modify their strategies. However, if q is
small we interpret that the bidder is not confident in its strategy and is willing to
make huge modifications.

The motivation for this rule is the following: imagine players i and j compete,
and j emerges as the winner. If j’s parameter pj is greater than or equal to i’s param-
eter pi, it suggests j could have potentially achieved a higher revenue by bidding
less.



January 22, 2024 22:16 WSPC/INSTRUCTION FILE output

Kinetic theory of active particles meets auction theory 7

Since the revenue is determined by vj − β j(vj), where vj represents their valua-
tion and β j(vj) represents their bid, a smaller parameter would have led to a lower
bid, potentially increasing their revenue.

Therefore, in this scenario, it is advantageous for j to adjust their strategy and
bid a smaller fraction of their valuation in future rounds. However, if j’s parameter
is already lower than i’s, they will maintain their current strategy, as their victory
might have been due to chance rather than an excessively high bid.

Conversely, in this same situation, player i, who lost despite having a lower
parameter, will seek to increase their parameter in subsequent rounds to enhance
their chances of winning.

Indeed we can check that the proposed rule gives an increase in the parameter
as

1 − q(1 − pi(t)) ≥ pi(t)

if and only if

1 − pi(t) ≥ q(1 − pi(t)),

which is true since q ∈ (0, 1).
Figure 1 shows the evolution in time of bidders’ p parameter for a simulation

with N = 1000 bidders with two different initial distribution of p parameters. The
learning parameter q was set to q = 0.995 in both simulations. We can observe
that bidders coordinate in the sense that they tend to share the same parameter,
p = 1/2 in both cases. Varying the initial distribution of p’s does not affect this
qualitative behavior. These agent-based simulations thus suggest that bidders are
actually learning the Nash equilibrium, namely bidding half their valuation.

To assess the influence of q, we show in Figure 2 the final distribution of
bidders’p parameter for different values of q. When q ≃ 1, the distribution is
concentrated around 0.5 in agreement with what we just observed. Then, as q de-
creases, the distribution is still mostly concentrated around 0.5 but its variance
increased until a critical value q ≃ 0.6 where the distribution becomes bimodal.
As q keeps on decreasing, the two peaks travel to the left and right respectively.
Eventually when q ≃ 0, the distribution is very similar to (1/2)δ0 + (1/2)δ1, i.e.
approximately half the bidders have p ≃ 0 whereas the other half have p ≃ 1.

The model we described embodies key features of the kinetic theory of active
particles: nonlinearity, heterogeneity, and learning.

First, heterogeneity is inherent: bidders express their strategies through bids in
equation (3.1) , and these bids vary based on each bidder’s private valuation. This
valuation, represented by the heterogeneously distributed parameter pi, makes
each bidder unique.

Second, the model exhibits nonlinearity: interactions between bidders drive the
evolution of their internal activity (pi) according to the nonlinear updating rules
(3.2)-(3.3). This means each bidder continuously adapts their strategy and internal
state based on the dynamic, stochastic environment created by the other bidders.
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Third, learning is a core principle: through repeated interactions, bidders ad-
just their internal activity, effectively learning from their experiences and the be-
havior of others. This learning process shapes their future bidding strategies and
contributes to the evolving dynamics of the system.

Fig. 1. Individual trajectories of bidders’ p parameter, with an initial condition uniformly distributed in
[0, 0.7] (left), and where a quarter of the bidders draw independently their p uniformly in [0, 0.2] and
the remaining bidders uniformly in [0.5, 1] (right).
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Fig. 2. Histograms of bidders’ p parameter at the stationnary state for different values of q. The initial
distribution of bidders’ p is the same as in Figure 1 (right).

The rest of this section is devoted to a theoretical study of the model aiming at
understanding why bidders actually learn to bid the Nash equilibrium.

3.1. Evolution of the parameters

We want to know if agents learn how to play optimally. Hence, we will be con-
cerned with the time evolution of their parameters. To achieve this, we want to
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construct a transport equation for the empirical measure defined by the distribu-
tion of agents in (0, 1). We will do this in two steps. First, we will describe the
evolution of the parameter of a fixed bidder from a time t to t + ∆t, where ∆t is
a short time. Then, by taking ∆t → 0 we will get a differential equation and we
will be able to get a first order partial differential equation (in a weak formulation)
from the evolution of the empirical measure.

Let us fix a player i and write the expected value of pi(t + ∆t):

pi(t + ∆t) = pi(t)P(i was not chosen) + ∑
j

p′iP(i plays against j)

where p′i represents the value of pi after the interaction. The sum on the right-hand
side must be split into four cases corresponding to i winning or losing, and if its
parameter was bigger or smaller than the parameter of its opponent. Notice that i
has j as an opponent with probability 1

N−1 . After rearranging the terms we get:

pi(t + ∆t)− pi(t)
∆t

=− pi(t) +
1

N − 1

pi(t)q ∑
j:pi≥pj

P(pjVj < piVi)

+ (1 − q(1 − pi(t))) ∑
j:pj≥pi

P(pjVj > piVi)

+ pi(t) ∑
j:pi>pj

P(pjVj > piVi)

+pi(t) ∑
j:pi<pj

P(piVi > pjVj)

 .

(3.4)

The probabilities on the right hand side can be computed using the following
Lemma:

Lemma 3.1. Let a, b ∈ (0, 1) and let Vi, Vj ∼ U [0, 1] be independent random variables.
Then,

P(aVi < bVj) =


b/(2a) if b < a

1 − a/(2b) if b ≥ a.

The proof is a direct calculation and therefore omitted.11

As a consequence of this lemma we obtain

(N − 1)
pi(t + ∆t)− pi(t)

∆t
= qpi ∑

j:pi≥pj

(
1 −

pj

2pi

)
+ (1 − (1 − pi)q) ∑

j:pj≥pi

(
1 − pi

2pj

)

+pi ∑
j:pi>pj

pj

2pi
+ pi ∑

j:pj>pi

pi
2pj

− pi(N − 1).



January 22, 2024 22:16 WSPC/INSTRUCTION FILE output

10 C. Crucianelli, J.P. Pinasco, N. Saintier

Letting ε := 1 − q and noticing that 1 − (1 − pi)(1 − ε) = pi + ε(1 − pi), we can
rearrange terms and get in the limit ∆t → 0 the equation

N − 1
ε

dpi
dt

=− pi ∑
j:pi≥pj

(
1 −

pj

2pi

)
+ (1 − pi) ∑

j:pj≥pi

(
1 − pi

2pj

)
. (3.5)

For this limit to be valid we need to assume that q is close enough to one, so
that the changes on the parameters are slow.

3.2. Equilibrium of the discrete dynamic

We look for a symmetric and stationary solution of (3.5):

Lemma 3.2. The only symmetric and stationary solution to the discrete dynamic (3.5) is
pi(t) = 1

2 for all i and every t.

Proof. We replace the left hand side of (3.5) by 0 and in the right hand side we
replace pi, pj =: p. As the last two sums are over sets where pj < pi and pi < pj,
equation (3.5) takes the form:

0 = qp ∑
j:j ̸=i

(
1 − 1

2

)
+ (1 − (1 − p)q) ∑

j:j ̸=i

(
1 − 1

2

)
− p(N − 1)

i.e.

(1 − q)(N − 1)
(

1
2
− p

)
= 0.

The only factor that can be zero is the last one so p = 1
2 is the unique solution.

3.3. A transport equation

In this section we rewrite the system of equations (3.5) for the empirical measure

ft =
1
N

N

∑
i=1

δpi(t),

associated to the pi’s. Recall that∫
φ(p)d ft(p) =

1
N

N

∑
i=1

φ(pi(t)),

for any bounded measurable function φ. Then (3.5) can be written as

N − 1
Nε

dpi
dt

= H[ ft](pi(t)),

where H is defined as

H[ ft](p) = −p
∫

d ft(p′)1{p≥p′}

(
1 − p′

2p

)
+ (1 − p)

∫
d ft(p′)1{p′≥p}

(
1 − p

2p′

)
.
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Via a re-scaling of the time variable, we can absorb the positive constants ε and
(N − 1)/N to obtain

dpi
dt

= H[ ft](pi(t)) (3.6)

It follows that

d
dt

∫
φ(p)d ft(p) =

1
N

N

∑
i=1

φ′(pi(t))p′i(t)

=
1
N

N

∑
i=1

φ′(pi(t))H[ ft](pi(t)).

Expressing the sum on the right hand side using ft, we see that the system of
equations (3.6) is equivalent to

d
dt

∫
φ(p)d ft(p) =

∫
d ft(p)φ′(p)H[ ft](p), ∀ φ ∈ C1([0, 1]). (3.7)

Notice that (3.7) is the weak formulation of the first order equation

∂ ft

∂t
+

∂

∂p
[H[ ft](p) ft] = 0.

This transport equation thus describes the evolution in time of the distribution of
agents in the strategies p, the updating rule (3.2) being embodied in the function
H defined in (3.9).

We can summarize the result obtained in this section as follows:

Theorem 3.1. The dynamic (3.2) gives the transport equation:

∂ ft

∂t
+

∂

∂p
[H[ ft](p) ft)] = 0, (3.8)

where

H[ ft](p) = −p
∫

d ft(p′)1{p≥p′}

(
1 − p′

2p

)
+ (1 − p)

∫
d ft(p′)1{p′≥p}

(
1 − p

2p′

)
.

(3.9)

3.4. Stationary solutions of transport equation

As before, we will study the stationary solutions to the equation (3.8).
We first look for stationary solution in the form of a Dirac’s Delta measure δa,

a ∈ [0, 1]:

Proposition 3.1. The Dirac’s Delta measure at 1
2 is the only stationary solution of equa-

tion (3.8) in the set {δa, a ∈ [0, 1]}.

Proof. The result follows by noticing that δa is a stationary solution if and only if
H[δa](a) = 0. Recalling the definition (3.9) of H, we see that

H[δa](a) = −a
(

1 − a
2a

)
+ (1 − a)

(
1 − a

2a

)
=

1
2
(1 − 2a).
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Thus H[δa](a) = 0 only when a = 1
2 .

This result was expected as we know that the only symmetric Nash equilibrium
for the first-price auction is to have all the players having a parameter of 1/2 so
this translates to an empirical measure ft = δ1/2.

In fact we claim that δ1/2 is the only stationary solution to (3.8) among all prob-
ability measures over [0, 1]. To prove this, we first find an equation satisfied by the
moments Mk(t) =

∫
pk d ft(p), k ∈ N, of ft.

Proposition 3.2. For any k ∈ N and t > 0, it holds that:

dMk(t)
dt

=
∫∫

d ft(p)d ft( p̃)1{p≥ p̃}

(
1 − p̃

2p

)
k[ p̃k−1 − pk − p̃k]. (3.10)

Proof. We take φ(p) = pk as a test function in equation (3.8) and we obtain

dMk
dt

=
d
dt

∫
pkd ft(p) =

∫
d ft(p)H[ ft](p)kpk−1

=−
∫∫

d ft(p)d ft( p̃)kpk−11{p≥ p̃}p
(

1 − p̃
2p

)
+
∫∫

d ft(p)d ft( p̃)kpk−11{ p̃≥p}(1 − p)
(

1 − p
2p̃

)
.

(3.11)

By exchanging p and p̃ in the second integral we get

dMk
dt

=
∫∫

d ft(p)d ft( p̃)
(

1 − p̃
2p

)
1{p≥ p̃}k[ p̃k−1(1 − p̃)− pk]

from which the result follows.

It follows in particular that

dM1(t)
dt

=
∫∫

d ft(p)d ft( p̃)1{p≥ p̃}

(
1 − p̃

2p

)
[1 − p − p̃] (3.12)

and
dM2(t)

dt
= 2

∫∫
d ft(p)d ft( p̃)1{p≥ p̃}

(
1 − p̃

2p

)
[ p̃ − p2 − p̃2]. (3.13)

We can easily recover the result of Proposition 3.1: if we look for a stationary solu-
tion in the form of a Dirac’s Delta measure δa then

0 =
dM1(t)

dt
=
(

1 − a
2a

)
[1 − a − a] =

1
2
(1 − 2a)

from which it follows that a = 1/2.
We can now prove that δ1/2 is in fact the only stationary solution:

Theorem 3.2. There exists a unique stationary solution f to the equation 3.8 and this is
f = δ1/2.
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Proof. Let f be a stationary solution. Then in view of (3.12)-(3.13),

0 =
d(M2 − M1)

dt
=
∫∫

d f (p)d f ( p̃)1{p≥ p̃}

(
1 − p̃

2p

)
g( p̃, p) (3.14)

where

g(x, y) = 3x + y − 2x2 − 2y2 − 1.

Notice that the set {g ≤ 0} is the disk centered at (3/4, 1/4) with radius 1/(2
√

2):

{g(x, y) ≤ 0} =

{(
x − 3

4

)2
+

(
y − 1

4

)2
≤ 1

8

}
.

It lies in {y ≤ x} and intercepts the line y = x only at (1/2, 1/2). It follows that
g( p̃, p) ≥ 0 in {p ≥ p̃} and is 0 only when p = p̃ = 1/2. Thus (3.14) implies that
f ⊗ f is supported at (1/2, 1/2), i.e., f = δ1/2.

The proof is finished.

3.5. Long-time behavior of the solutions of the transport equation

To shed light on the observed behavior of the agent-based simulations in Figure
1, we offer theoretical explanations for two key phenomena: coordination and pa-
rameter convergence.

Bidder coordination: As the simulations run, we see the support of the distri-
bution ft shrink to a single point. This suggests that bidders gradually coordinate
their bids, clustering around a specific value. Let us recall that the updating rules
(3.2)-(3.3) incentivize bidders who overbid to adjust their strategies.

Parameter convergence: We also observe a tendency for bidders’ internal pa-
rameters pi to converge towards the value 1/2. This can be understood as the emer-
gence of a Nash equilibrium in the bidding game. At pi = 1/2, bidders experience
neither an advantage nor a disadvantage, achieving a state of mutual balance. By
deviating from this point, bidders risk either winning less frequently or sacrificing
potential gains due to overly high bids. Therefore, repeated interactions naturally
drive them towards this equilibrium point.

Let us denote by [a(t), b(t)] the convex hull of the support of ft. It follows from
equations (3.8) that b′(t) = H[ ft](b(t)) and a′(t) = H[ ft](a(t)). By noticing that
1 − p

2p′ ≥
1
2 if p′ ≥ p, we see that

H[ ft](b(t)) ≤ − b(t)
2

+
1 − b(t)

2
ft({b(t)})

and

H[ ft](a(t)) ≥ − a(t)
2

ft({a(t)}) + 1 − a(t)
2

.

It follows that

b′(t)− a′(t) ≤ −1
2
(b(t)− a(t))− 1

2

[
1 − (1 − b(t)) ft({b(t)})− a(t) ft({a(t)})

]
.



January 22, 2024 22:16 WSPC/INSTRUCTION FILE output

14 C. Crucianelli, J.P. Pinasco, N. Saintier

Noticing that 1 = ft([a(t), b(t)]) ≥ ft({a(t)}) + ft({b(t)}) we can bound the last
bracket as

(1 − a(t)) ft({a(t)}) + b(t) ft({b(t)}) ≥ 0.

Thus, b′(t)− a′(t) ≤ − 1
2 (b(t)− a(t)) from which it follows that the support of ft

shrinks to a point exponentially fast: (b(t)− a(t) ≤ (b(0)− a(0))e−t/2.
In particular the distance between ft and the Dirac’s Delta mass centered at its

mean value δM1(t) is going to 0.
We can thus rewrite the equation (3.12) satisfied by M1(t) assuming that ft =

δM1(t) up to an error term going to 0:

d
dt

M1(t) =
(1

2
+ o(1)

)
− M1(t)

It follows that M1(t) → δ 1
2
.

We thus have proved

Theorem 3.3. Any solution ft to the transport equation (3.8) converges to δ 1
2

as
t → + ∞.

3.6. Simulations

In this section we consider numerical simulations for the discrete dynamics with
1000 players and 1000 iterations, that is, 106 two-player game interactions. We used
a value for the parameter q = 0.9, recall that as we discussed on the derivation of
the transport equation, we are interested in values of the parameter q close to 1.
However, we cannot expect a convergence to a pure Dirac’s Delta function, due to
random fluctuations and the step size. Moreover, for a small q we would obtain a
bimodal distribution.

The initial conditions we will consider are:

• C1: pi(0) = 0.99 for every 1 ≤ i ≤ 1000.
• C2: pi(0) = 0.1 for every 1 ≤ i ≤ 1000.
• C3: pi(0) = 0.01 for 1 ≤ i < 5000 and pi(0) = 0.99 for 5000 ≤ i ≤ 1000.

We start by comparing the means of the distributions. In Figure 3 we can see
that from the initial value of the mean it evolves fast, since in less than 100 it-
erations we get a stable distribution. In all the cases, we can see that the mean
stabilizes around 0.500 which was expected since the stationary distribution of the
kinetic equations is a Dirac’s Delta centered at 1/2.

In Figure 4 we get that the variance also reaches an equilibrium fast and the
limiting value is close to zero. This is again consistent with the expected distribu-
tion as the Dirac’s Delta has zero variance.

Finally, we can look at the histograms we get in the last iteration for the density
of players in the parameter space, presented in Figure 5.
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Fig. 3. We plot the evolution of the mean in 1000 iterations changing the initial condition. From left to
right we have on the first row the condition C1, followed by a zoom of the same simulated data set after
100 iterations. The second row correspond to the initial condition C2. The last row corresponds to the
condition C3.

From these results we can notice that the initial condition does not seem to be
a relevant factor for the dynamics. In the three cases considered we observed that
the final mean was 0.500± 0.001 and the final variance was 0.0015± 0.0005. This is
the result we were expecting for long times. In all of the cases, we can notice that
before 200 iterations we already achieved a distribution in those ranges for both
the mean and the variance.
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Fig. 4. We plot the evolution of the variance in the 1000 iterations changing the initial condition. From
left to right we have on the first row the condition C1, followed by a zoom of the same simulated data set
after 100 iterations. The second row correspond to the initial condition C2. The the last one corresponds
to the condition C3.
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Fig. 5. Histograms of the final density of players in the parameter space, corresponding to the initial
condition C1 (left), C2 (center) and C3 (right).
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4. A more general model

Let us consider again a population of N players. As before, interactions occur fol-
lowing a Poisson process of rate equal to 1, and two players i and j are randomly
paired in a two-player auction. They draw their valuations vi, vj of the object to be
sold from independent random variables Vi, Vj ∼ U [0, 1]. and bid

βi(vi) = pi(t)vi, and β j(vj) = pj(t)vj.

where pi(t), pj(t) ∈ [0, 1]. The winner of the auction is the player with the highest
bid. Players i and j then update their parameter pi and pj with the following rule:

pi(t + ∆t) =


pi(t)(1 − cγ) if i wins,

(1 − γ)pi(t) + γ if i looses,
(4.1)

where γ > 0 is a small parameter, the learning rate, and the constant c depends on
the auction rules: c = 1 corresponds to a first price auction, and c = 0 to a second
price auction.

This model is more realistic than the previous one since the players do not need
to know the other players’ valuations, but just react to the result of the auction and
try to improve their utility. Notice that in the second price auction, the winner pays
the second highest bid and so has no incentive to modify his p parameter since this
would not lead to a strict increase of his utility. In contrast, in the first price auction
where the winner pays his bid, decreasing his parameter p does increase his pay-
off. This the rationale behind the the values c ∈ {0, 1} in (4.1).

4.1. A kinetic equation

Let us derive formally a first order partial differential equation for the evolution
of ft =

1
N ∑N

i=1 δpi(t) in this model. We assume a player randomly interacts with a
Poisson process with rate 1. Let us compute pi(t + ∆t) for a fixed player i:

pi(t+∆t) = (1−∆t)pi(t)+ pi(t)(1− cγ)P(i wins)+ (pi(t)(1−γ)+γ)P(i looses).

Denoting Aij the event that i plays against j, so that P(Aij) = ∆t/(N − 1), we
obtain

P(i wins) =
∆t

N − 1 ∑
j ̸=i

P(i wins|Aij) =
∆t

N − 1 ∑
j ̸=i

P(piVi > pjVj),

and similarly,

P(i looses) =
∆t

N − 1 ∑
j ̸=i

P(pjVj > piVi).
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Using Lemma 3.1 to compute these probabilities leads to

pi(t + ∆t)− pi(t)
∆t

= −pi(t) + pi(t)(1 − cγ)
1

N − 1

 ∑
j:pi≥pj

(
1 −

pj

2pi

)
+ ∑

j:pj>pi

pi
2pj


+(pi(t)(1 − γ) + γ)

1
N − 1

 ∑
j:pj≥pi

(
1 − pi

2pj

)
+ ∑

j:pi>pj

pj

2pi

 .

If we group the sums in pi < pj, pj < pi and pi = pj, then after reordering the
expression and letting ∆t → 0, we get a system of ordinary differential equations:

N − 1
γ

dpi(t)
dt

= ∑
j:pj>pi

1
2pj

(
p2

i (1 − c)− 2pi pj + 2pj − pi

)
+ ∑

j:pi>pj

1
2pi

(
−2p2

i c + pi pj(c − 1) + pj

)
+ ∑

j:pj=pi

1 − pi(c + 1)
2

.

This can be written in terms of the empirical measure ft =
1
N ∑N

i=1 δpi(t) as

N − 1
Nγ

dpi(t)
dt

= Hc[ ft](pi(t)),

where

Hc[ ft](p) =
∫

d ft(p′)1{p′>p}
1

2p′
(

p2(1 − c)− 2pp′ + 2p′ − p
)

+
∫

d ft(p′)1{p>p′}
1

2p

(
−2p2c + pp′(c − 1) + p′

)
+
∫

d ft(p′)1{p=p′}
1 − p(c + 1)

2
.

(4.2)

Then as in the previous section, we obtain that ft is a weak solution of the transport
equation

∂ f
∂t

+
∂

∂p
[Hc[ ft](p) ft] = 0. (4.3)

in the sense that
d
dt

∫
φ(p)d ft(p) =

∫
φ′(p)Hc[ ft](p)d ft(p). ∀φ ∈ C1([0, 1]).

4.2. First price auction

In the case of a first-price auction, we use c = 1 so the field Hc takes the form:

H1[ ft](p) =
∫

d ft(p′)1{p′>p}
1

2p′
(
−2pp′ + 2p′ − p

)
+
∫

d ft(p′)1{p>p′}
1

2p

(
−2p2 + p′

)
+
∫

d ft(p′)1{p=p′}
1 − 2p

2
.

(4.4)
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We can prove that the Nash equilibrium where all the players bid half of their
private values is a stationary solution to equation (4.3) with H1. Moreover, we can
prove the following result:

Theorem 4.1. The unique Dirac’s Delta solution of equation (4.3) for c = 1 is f (t, p) =
δ1/2(p).

Proof. In view of (4.3), it suffices to prove that H1[δa](a) = 0 if and only if a = 1/2.
This follows from

H1[δa](a) =
−2a + 1

2

In fact following the same informal reasoning as before we can verify that the
support of ft shrinks to a point. Indeed (with the same notation as before),

a′(t) = H1[ ft](a(t)) =
∫

d ft(p′)1{p′>a}
1

2p′
(
−2ap′ + 2p′ − a

)
+

1 − 2a
2

ft({a(t)})

=
∫

d ft(p′)
1

2p′
(
−2ap′ + 2p′ − a

)
= 1 − a −

∫
d ft(p′)

a
2p′

and analogously,

b′(t) = H1[ ft](a(t)) =
∫

d ft(p′)1{b(t)>p′}
1
2b

(
−2b2 + p′

)
+

1 − 2b
2

ft({b(t)})

=
∫

d ft(p′)
1
2b

(
−2b2 + p′

)
=
∫

d ft(p′)
p′

2b
− b(t).

Thus

b′(t)− a′(t) = −(b(t)− a(t)) +
∫

d ft(p′)
p′

2b
+
∫

d ft(p′)
a

2p′
− 1.

Since both integrals on the right-hand side are lower or equal than 1/2, we obtain
that b′(t)− a′(t) ≤ −(b(t)− a(t)) and b(t)− a(t) → 0 exponentially fast.

It follows that the distance between ft and δM(t) tends to 0, where M1(t) =∫
d ft(p)p is the mean value of p. Assuming for the moment that

M′
1(t) =

1
2
(1 − 2M1(t)), (4.5)

it is clear that M1(t) → 1/2 and thus ft → δ 1
2
.

The proof (4.5) is easy. Taking φ(p) = p in (4.3) gives

M′
1(t) =

∫∫
d ft(p)d ft(p′)1p′>p

1
2p′

(−2pp′ + 2p′ − p)

+
∫∫

d ft(p)d ft(p′)1p′<p
1

2p
(−2p2 + p′) +

∫∫
d ft(p)d ft(p′)1p′=p

1 − 2p
2

.
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Exchanging p and p′ in the second integral gives

M′
1(t) =

∫∫
d ft(p)d ft(p′)1p′>p(1 − p − p′) +

∫∫
d ft(p)d ft(p′)1p′=p

1 − 2p
2

=
1
2

∫∫
d ft(p)d ft(p′)(1 − p − p′).

Hence, the result follows.

4.3. Second price auction

For second price auction we take c = 0 and the field Hc takes the form

H0[ ft](p) =
∫

d ft(p′)1{p′>p}
1

2p′
(

p2 − 2pp′ + 2p′ − p
)

+
∫

d ft(p′)1{p>p′}
1

2p
(
−pp′ + p′

)
+
∫

d ft(p′)1{p=p′}
1 − p

2
.

(4.6)

As before, we can show that the Nash equilibrium where all the bidders bid
their true valuation is the only stationary solution in the functional form of a
Dirac’s Delta.

Theorem 4.2. The unique Dirac’s Delta solution of equation (4.3) for c = 0 is f = δ1.

Proof. As before this follows noticing that H1[δa](a) = 1−a
2 which is zero only

when a = 1.

In fact, following the same heuristic argument as before, we can convince our-
selves that ft converges to δ1 as t → +∞. Indeed denoting a(t) the left endpoint of
the support of ft, we have (informally) that

a′(t) = H0[ ft](a(t)) =
∫

d ft(p′)1{p′>p}
1

2p′
(

a2 − 2ap′ + 2p′ − a
)
+

1 − a
2

ft({a(t)}

i.e.,

a′(t) = (1 − a(t))
{ ∫

d ft(p′)1{p′>p}
1

2p′
(2p′ − a) +

1
2

ft({a(t)}
)

= (1 − a(t))
∫

d ft(p′)
1

2p′
(2p′ − a)

Since (2p′ − a)/(2p′) ≥ 1/2 we obtain a′(t) ≥ 1
2 (1 − a(t)) so that a(t) → 1 as

desired.
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4.4. Simulations

In this section we present numerical simulations of the discrete dynamics corre-
sponding to the microscopic rules (4.1). We considered, as before, 1000 players and
1000 iterations, that is, 106 two-player game interactions. In both cases we choose
an initial distribution drawn from a normal distribution N (0, 1), considering only
values in [0, 1]. As before, we cannot expect a convergence to a pure Dirac’s Delta
function, due to random fluctuations and the step size.

We show the result for a first and second price auction in Figure 6 and Figure 7
respectively. We can observe that bidders’ parameter p concentrate around 0.5 and
1 respectively, in agreement with the theoretical considerations exposed above.

Fig. 6. Learning in the first price auction with rule (4.1). First row: evolution of the mean (left) and
variance (right) of the distribution of the parameter p. Second row: histogram of the final density of
players in the parameter space (left) and individual trajectories (right).

5. Final remarks

We have analyzed first and second price auctions within the kinetic theory of ac-
tive particles. This powerful tool enables us to find Bolztmann-type equations for
a population of agents interacting through auctions on the space of strategies, de-
fined as the percentage of the true valuation that they will bid. In a simple model,
using a posteriori the information of the true valuations, we proved the conver-
gence of the dynamics to the Nash equlibrium. Then, by introducing a different
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Fig. 7. Learning in the second price auction with rule (4.1). First row: evolution of the mean (left) and
variance (right) of the distribution of the parameter p. Second row: histogram of the final density of
players in the parameter space (left) and individual trajectories (right).

microscopic rule, we obtained that the Nash equilibria of both auctions are the
support of Dirac delta functions which are the stationary solutions of the corre-
sponding kinetic equations. We show the convergence by using agent based simu-
lations.

The proposed model captures the essence of the kinetic theory of active parti-
cles (KTAP) by incorporating its key features. Bidders’ interactions and resulting
payoffs are inherently non-linear. This means small changes in strategies can have
significant repercussions on outcomes, creating a dynamic and unpredictable en-
vironment. On the other hand, each bidder’s behavior is unique, driven by their
private valuation and past experiences. This diversity in bidding strategies fos-
ters a complex interplay within the system. They continuously adapt their internal
state (represented by their parameter) based on the outcomes of their interactions.
This learning process allows them to refine their strategies and adjust to the evolv-
ing behavior of other bidders.

Furthermore, the model strengthens the connection between KTAP and game
theory in two key ways:

• Game-mediated interactions: Bidders engage in repeated strategic interactions,
akin to playing games, which drive the evolution of their internal activity (par-
ticles’ activity, in KTAP terminology). This highlights the critical role of game
theory in modeling strategic agent behavior.
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• Dynamic learning towards Nash equilibrium: Through their learning process,
bidders gravitate towards a dynamic Nash equilibrium, where no individual
can benefit by unilaterally changing their strategy. This demonstrates how the
model leverages KTAP’s framework to capture the emergence of equilibrium
outcomes in complex strategic systems.

There are several interesting remaining problems, let us mention a few of them:

5.1. Three or more players

Real world auctions typically have more than two bidders, and in that case the
previous models can be analyzed through agent-based simulations.

We present here the results of some experiments varying the number of bid-
ders. We introduce a microscopic update rule depending on the order of a player
according to the value of its parameter p. Given the symmetry of players, we as-
sume that a winner of the auction does not wish to belong to the upper half of
players, and any player who loses, does not wish to belong to the lower half of
players, and they decrease or increase their parameter p as before. If k is odd, the
player in the middle of the list will flip a coin to decide which half of the list they
belong to.

In Figure 8 we show the simulation for k players auctions, 2 ≤ k ≤ 15 and using
the initial condition C1. We take the mean value of p after 800 steps of the dynam-
ics, and compare with the theoretical Nash equilibrium. We omit the histograms
for each k, although we can observe that the population concentrates around the
corresponding Nash equilibrium for each k.

5 10 15
Number of players

0.5

0.6

0.7

0.8

0.9

M
ea

n 
va

lu
e 

of
 p

Simulation
Nash equilibrium

5 10 15
Number of players

0.006

0.004

0.002

0.000

Er
ro

r

Error

Fig. 8. Simulation of k players auctions. Nash equilibrium and mean value of p after 800 steps of the
evolution with 1000players, q = 0.9, and 2 ≤ k ≤ 15 (left). Difference between the theoretical Nash
equilibrium and the mean value (right).

Finally, let us remark that the derivation of the corresponding kinetic equa-
tions involves a highly complex system of interactions, since the interaction rules
depend on the parameters of the different bidders.
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5.2. Other auctions formats

There are several auction formats beyond the ones considered here. A very inter-
esting problem is how to model in agent-based frameworks, an English auction.
Even for two bidders A and B, the dynamics of the interaction is not trivial. Sup-
pose that each bidder has a preliminary offer, and after agent A places a bid, agent
B can offer a higher number than its preliminary offer, which in turns can be fol-
lowed by a higher bid of agent A, and so on. In this way, a single interaction is
defined by a sequence of interactions where the previous information is incorpo-
rated in the new bids.

For instance, few works deal with iterative auctions using an agent-based ap-
proach, and we believe it is very important to understand this dynamics. Essen-
tially, two time scales seems to be involved, a large one where the active particles
learn how to bid, and a shorter one where they change their internal mechanisms
quickly reacting to the other bids.

An interesting format is the all pay auction,25 where all the bidders pay while
the object is only assigned to the one with the highest bid. In that case, the optimal
strategy for symmetric bidders with independent and identical random uniform
valuations is to bid 1/N of the true valuation of the object, where N is the number
of bidders.

5.3. Non-homogeneous bidders

We have considered only symmetric auctions with the same class of bidders, i.e.,
risk neutral and drawing their valuations from the same distribution.

However, there are many types of bidders, which can be classified in terms of
their risk attitude, distribution of valuations, and many other factors. For instance,
in procurement auctions, where bid compete for some contract, bidder’s financial
size, credit access or budget, previous experience, among others, make the problem
difficult to solve even from the theoretical point of view.

5.4. Theoretical considerations

In a recent work,33 a learning rule for renewable energy procurement auctions was
considered. As in the present work, a rigorous derivation of the Fokker-Planck
equations seems difficult to achieve since the terms in the Boltzmann-type equa-
tion are not continuous. In this class of auctions, each player bids for a portion
or the total of the auctioned object, and one or more bidders can be awarded. Al-
though simulations in that work reproduce the results of German wind and so-
lar PV auctions with notable accuracy, a complete theoretical analysis and under-
standing of these auctions has not yet been fully developed.
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